Biologically Inspired Robotic Arm Control Using an Artificial Neural Oscillator

نویسندگان

  • Woosung Yang
  • Jaesung Kwon
  • Nak Young Chong
  • Yonghwan Oh
  • Stefano Lenci
چکیده

We address a neural-oscillator-based control scheme to achieve biologically inspired motion generation. In general, it is known that humans or animals exhibit novel adaptive behaviors regardless of their kinematic configurations against unexpected disturbances or environment changes. This is caused by the entrainment property of the neural oscillator which plays a key role to adapt their nervous system to the natural frequency of the interacted environments. Thus we focus on a self-adapting robot arm control to attain natural adaptive motions as a controller employing neural oscillators. To demonstrate the excellence of entrainment, we implement the proposed control scheme to a single pendulum coupled with the neural oscillator in simulation and experiment. Then this work shows the performance of the robot arm coupled to neural oscillators through various tasks that the arm traces a trajectory. With these, the real-time closedloop system allowing sensory feedback of the neural oscillator for the entrainment property is proposed. In particular, we verify an impressive capability of biologically inspired self-adaptation behaviors that enables the robot arm to make adaptive motions corresponding to an unexpected environmental variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VFI-based Robotic Arm Control for Natural Adaptive Motion

Since neural oscillator based control methods can generate rhythmic motion without information on system dynamics, they can be a promising alternative to traditional motion planning based control approaches. However, for field application, they still need to be robust against unexpected forces or changes in environments so as to be able to generate “natural motion” like most biological systems....

متن کامل

A Neural Network-Based Approach for Trajectory Planning in Robot–Human Handover Tasks

Service robots and even industrial robots recently started sharing human workspace for creating new working settings where humans and robots work even hand by hand. On the one hand, this new scenario raises problems of safety, which are being solved by adding suitable sensor batteries to robot control systems, and on the other hand, it entails dealing with psychophysical aspects as well. Motion...

متن کامل

Biologically Inspired Locomotion Generation and Control of Humanoid Robots Employing a Network of Neural Oscillator

In fact, many researchers have dealt with these fields individually as inherent research approaches. However although these strategies have performed independently in robotics fields, these approaches are key matters connected with our objective. Although recently many humanoid robots have made their successful debut, they are still very difficult to control. Thus they may not behave as expecte...

متن کامل

From schemas to neural networks: A multi-level modelling approach to biologically-inspired autonomous robotic systems

Bio logy has been an important source of inspiration in building adaptive autonomous robotic systems. Due to the inherent complexity of these models, most biologicallyinspired robotic systems tend to be ethological without linkage to underlying neural circuit ry. Yet, neural mechanisms are crucial in modeling adaptation and learning. The work presented in this paper describes a schema and neura...

متن کامل

Whiskerbot: A Robotic Active Touch System Modeled on the Rat Whisker Sensory System

The Whiskerbot project is a collaborative project between robotics engineers, computational neuroscientists and ethologists, aiming to build a biologically inspired robotic implementation of the rodent whisker sensory system. The morphology and mechanics of the large whiskers (macro-vibrissae) have been modeled, as have the neural structures that constitute the rodent central nervous system res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010